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Abstract An approach to the evaluation of the two-electron repulsion integrals
exactly in sine finite basis representation is proposed. The two-electron coulomb poten-
tial integrals are calculated respectively in sine finite basis representation by using
two-fold Gaussian quadrature rules and in discrete variable representation by using
the natural potential expansion of coulomb potential r12. The efficiency and accuracy
of two methods to calculate the two-electron repulsion integrals are compared. Some
demonstrative calculations indicate that both the two ways are effective methods to do
two-electron integrals calculations in the multi-configuration time-dependent hartree
fock (MCTDHF) frame. By using the method to calculate the two-electron integrals in
sine FBR, the working equations of MCTDHF are propagated in imaginary time. The
ground state energy of helium atom obtained in the imaginary propagation is close to
the Full Configuration interaction energy calculated by Molpro.

Keywords MCTDHF · Two electrons integrals · Finite basis representation ·
Discrete variable representation · Gaussian quadrature integrals ·
Nature potential approximation

1 Introduction

In recent years, there has been increasing interest in the correlated dynamics of many-
electron systems. Theorists have developed a variety of explicit time-dependent ver-
sions of electronic structure methods [1–15]. Most of the explicitly time-dependent
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approaches to quantum chemistry yet, were mainly carried out on the density functional
(TD-DFT) [1,2], the Hartree–Fock (TD-HF) level of theory [3,4], or the configuration
interaction (TD-CI) method [5]. An important method known as multi-configuration
time-dependent Hartree Fock (MCTDHF) has been developed in the past few years
[6–15]. It can either be seen as an explicitly time-dependent version of the complete
active space self-consistent field method, or a specialization of the well established
multi-configuration time-dependent Hartree (MCTDH) method [16–19] for distin-
guishable nuclei. Just recently, we have demonstrated the use of the MCTDHF method
to compute the double ionization of helium atom [20].

The calculations of the so-called mean field operator matrix in MCTDHF frame
are quite time-consuming [8,12]. The accurate and efficient calculations of mean
field operator matrix are the crucial step to study the electron-electron correlated
dynamics of the system interacting with laser field. The calculations of mean field
are related to the two-electron spin orbital integrals in DVR or in sine FBR. The
evaluation and manipulation of the two-electron integrals is a difficult major in the
MCTDHF calculation. So the detailed studies of the methods to calculate the two-
electron integrals are necessary and important. The properties of the approximate
methods and accurate method are investigated respectively in this paper. The efficiency
and accuracy of the two methods are compared.

2 State of the problem

To clear things up, we take helium atom in one dimension (1D) for example. The time
dependent Hamiltonian for 1D helium atom irradiated by a laser fields ε(t) reads,

H(x, y, t) = −1

2

d2

dx2 − 1

2

d2

dy2 − 2√
x2 + b2

− 2
√

y2 + b2

+ 1
√

(x − y)2 + b2
+ (x + y)ε(t) (1)

in where the electron-electron interaction and the electron-nucleus interaction are
modeled by the usual ‘smoothed Coulomb’ potential with shielding parameter b. The
sine DVR which was traditionally used in theoretical studies of molecular reactive
dynamics has been chosen in the calculation. The sine DVR uses the particle-in-a-box
eigenfunctions as a basis. The box boundaries are x0 and xN+1, and L = xN+1 − x0
denotes the length of the box. The basis functions are thus,

{
ϕ j (x) = √

2/L sin( jπ(x − x0)/L), j = 1, 2, ...N
}

for x0 ≤ x ≤ xN+1 (2)

The corresponding grid points basis functions are {χi (x), i = 1, 2, ...N }, and the
corresponding grid point values are {xi , i = 1, 2, . . . N }.

In order to solve the MCTDHF working equations, the two-electron integrals in
DVR or in FBR must be calculated. The two-electron integrals in DVR read,
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T W ODV R =
∫∫

x,y

χ∗
α(x)χβ(x)

1
√

((x − y)2 + b2)
χ∗

σ (x)χδ(x)dxdy (3)

Those integrations will consume much time and memory traditionally [8]. Up to now,
a significant approximation can be obtained with the natural potential expansion of
coulomb potential r12,

Vee(x, y) =
M∑

m=1

Um(x) ∗ Vm(y) (4)

with changing a two-dimensional integration into 2M one dimension integration. In
the paper, we have attempted to do an accurate calculation of the integration in the
sine FBR explicitly.

T W OF B R =
∫∫

x,y

ϕ∗
i (x)ϕ j (x)

1
√

((x − y)2 + b2)
ϕ∗

k (x)ϕl(x)dxdy (5)

which can be accomplished by using the Gaussian quadrature rule. The method can
be used for a staff gauge to identify the accuracy of the above approximate method
in Eq. 4. The Eq. 5 can also be written as T W O PF B R = [ϕiϕ j |ϕkϕl ] in Chemist’s
notation [21]. The two-fold Gaussian quadratrue formula with weigths ωi and nodes
xi reads (nd is the number of nodes)

1∫

−1

1∫

−1

f (x, y)dxdy =
nd∑

i=1

nd∑

j=1

ωiω j f (xi , yi ) (6)

3 Illustrative calculations and discussions

We have firstly studied the influence of the number of expansion terms M in Eq. 4
on the accuracy of the approximate expansion of coulomb potential. The approxi-
mate coulomb potential becomes better with the increment of the expansion length.
The differences between the accurate coulomb potential and the approximate one are
calculated with the following formula,

√√
√
√

N∑

i=1

N∑

j=1

(Vee(xi , yi ) − Vee(xi , yi )2)/N 2 (7)

where xi ,yi are grid points values, and N is the number of grid points. The calculated
results are shown in Fig. 1. When the expressions of Um(x) and Vm(y) are available,
it is easy to calculate the two-electron integrals,
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Fig. 1 Differences between the approximate potential and the exact potential as a function of the natural
potential expansion size M . The total number of gird size is equal to 200. The gird range is [−10a.u., 10a.u.].

T W ODV R =
M∑

m=1

∫

x

χ∗
α(x)Umχβ(x)

∫

y

χ∗
σ (y)Vmχδ(y) (8)

The Eq. 5 of T W OF B R are calculated by using the Gaussian quadratrue formula.
What is the relationship between the two types of two-electron integrals? The relation
between the basis of sine FBR and that of DVR is,

ϕ j =
N∑

α

U jαχα (9)

in where U is the transform matrix between the two representations,

U jα =
√

2

N + 1
sin

(
jαπ

N + 1

)
(10)

So the two-electron integrals in sine FBR can also be written by

T W O PF B R = [ϕiϕ j |ϕkϕl ] =
∑

α,β,σ,δ

Ui,αU j,βUk,σ Ul,δ[χαχβ |χσ χδ] (11)

In order to compare the accuracy of the two calculation methods, parts of two-
electron integrals in sine FBR basis are computed by using Eqs. 5 and 11, respectively.
Some calculated results are listed in Table 1. It can be seen from the Table 1, the
calculated results obtained in the DVR agree highly with that calculated in the sine
FBR.
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Table 1 The two-electron integrals calculated exactly in sine FBR and in DVR with the approximation of
expansion of natural potential

[ϕi ϕ j |ϕkϕl ] T W OF B R T W O PF B R

1,1,1,1 0.318643432071903 0.318643463927603

1,1,1,2 −7.408111778374694E−017 2.735586209130859E−016

1,1,2,1 −6.742133387088561E−017 2.737729731883004E−016

1,1,2,2 0.261054382191705 0.261054471929947

1,2,1,1 −2.471690484116814E−016 2.870896413732283E−016

1,2,1,2 0.108889374945507 0.108889430386525

1,2,2,1 0.108889374945507 0.108889430386525

1,2,2,2 −9.343384079075402E−017 4.918705236931349E−016

2,1,1,1 −2.471690484116814E−016 2.870896413732283E−016

2,1,1,2 0.108889374945507 0.108889430386525

2,1,2,1 0.108889374945507 0.108889430386525

2,1,2,2 −9.343384079075402E−017 4.918705236931349E−016

2,2,1,1 0.261054382191708 0.261054471929948

2,2,1,2 −5.276854780825608E−016 3.983361693387499E−016

2,2,2,1 −5.456962616415375E−016 3.985495157623396E−016

2,2,2,2 0.277553022073186 0.277553229882156

The grid range [−10, 10]. The number of grid point is equal to 50

Fig. 2 The differences between the two-electron integrals calculated in DVR and the exact ones calculated
in sine FBR as a function of the number of the grid basis functions. The grid range is [−10a.u., 10a.u.].

The difference between the two-electron integrals calculated in the two represen-

tation is equal to

√
num∑

i, j,k,l
(T W OF B R − T W O PF B R)2, in where num is the number

of two-electron integrals. To make things more convenient and simple, num = 5 are
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Fig. 3 The influences of the number of the active space on the imaginary time process and the relaxed ground
state energy. We have used the traditional complete active space SCF method notation (Num, Numelectron)
to refer to a system with Numelectron electrons and Num spatial orbitals.

used in our calculation. We have plotted those as the function of the number of grid
points in Fig. 2. It is obvious that the two-electron integrals calculated by using the
accurate scheme in sine FBR are quite in agreement with those results obtained by
using the approximate method in DVR when the number of basis function are large
enough.

By taking advantage of the properties of the grid basis functions in DVR, Eq.8 can
be simplified by

T W ODV R =
M∑

m=1

δα,βUm(xα)δσ,δVm(xσ ) (12)

It is evident that not all the two-electron integrals are necessarily required in DVR, only
parts of the two-electron integrals which are non-zero are necessary. For example, there
are number of Ngrid points and number of M terms in the natural potential expansion.
Only N (N + 1)/2 non-zero integrals are required when the symmetry is considered.
So there are about 2M ∗ N (N + 1)/2(1 ≤ M ≤ N ) one-electron integrals when the
two-electron integrals are calculated in DVR. As for the calculation of Eq.12 in sine
FBR, there are about (N 4 + 2N 3 + 3N 2 + 2N )/8 two-fold integrals. Obviously, we
can draw a conclusion that the computing time of two-electron integrals in sine FBR is
much more expensive than that in DVR when the number of the grid points increases.

To further test the accuracy and the stability of our scheme to calculate the two-
electron integrals in sine FBR, we take typical two-electron system, such as helium
atom, for example. We have obtained the ground state energy of helium atom through
the propagation of MCTDHF equations in imaginary time (PIT) in the absence of an
external laser field. We have considered the influence of the numbers of the active
space on the atom relaxation energy when the guess wave function propagates in
imaginary time. The calculated results are shown in Fig. 3. We have increased the
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active space from 1 spatial orbital to 8 spatial orbitals. When the active space increases,
the relaxed ground energy becomes lower and lower. The relaxed energy of the PIT
with the number of 8 spatial orbital is 2.8999 hartree which is nearly equal to the Full
Configuration energy 2.90 hartree of helium atom calculated by Molpro [22].

4 Conclusions

We have proposed an approach for evaluating the two-electron repulsion integrals
exactly in sine FBR. This approach has been found to be an efficient and accurate
method which can be used for a staff gauge to identify the accuracy of the above
approximate method. We have also demonstrated the use of the new method to prop-
agate the MCTDHF working equations in imaginary time. The accurate ground state
energy of helium atom is obtained.
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